Ultrahigh field single-refocused diffusion weighted imaging using a matched-phase adiabatic spin echo (MASE).
نویسندگان
چکیده
PURPOSE To improve ultrahigh field diffusion-weighted imaging (DWI) in the presence of inhomogeneous transmit B1 field by designing a novel semi-adiabatic single-refocused DWI technique. METHODS A 180° slice-selective, adiabatic radiofrequency (RF) pulse of 4 ms duration was designed using the adiabatic Shinnar-Le Roux algorithm. A matched-phase slice-selective 90° RF pulse of 8 ms duration was designed to compensate the nonlinear phase of the adiabatic 180° RF pulse. The resulting RF pulse combination, matched-phase adiabatic spin echo (MASE), was integrated into a single-shot echo planar DWI sequence. The performance of this sequence was compared with single-refocused Stejskal-Tanner (ST), twice-refocused spin echo (TRSE) and twice-refocused adiabatic spin echo (TRASE) in simulations, phantoms, and healthy volunteers at 7 Tesla (T). RESULTS In regions with inhomogeneous B1 , MASE resulted in increased signal intensity compared with ST (up to 64%). Moderate increase in specific absorption rate (35-39%) was observed for adiabatic RF pulses. MASE resulted in higher signal homogeneity at 7T, leading to improved visualization of measures derived from diffusion-weighted images such as white matter tractography and track density images. CONCLUSION Efficient adiabatic SLR pulses can be adapted to single-refocused DWI, leading to substantially improved signal uniformity when compared with conventional acquisitions.
منابع مشابه
Self-refocused adiabatic pulse for spin echo imaging at 7 T.
Spin echo pulse sequences are used to produce clinically important T(2) contrast. However, conventional 180° radiofrequency pulses required to generate a spin echo are highly susceptible to the B(1) inhomogeneity at high magnetic fields such as 7 Tesla (7 T), resulting in varying signal and contrast over the region of interest. Adiabatic 180° pulses may be used to replace conventional 180° puls...
متن کاملUltrafast in vivo diffusion imaging of stroke at 21.1 T by spatiotemporal encoding.
PURPOSE This study quantifies in vivo ischemic stroke brain injuries in rats using ultrahigh-field single-scan MRI methods to assess variations in apparent diffusion coefficients (ADCs). METHODS Magnitude and diffusion-weighted spatiotemporally encoded imaging sequences were implemented on a 21.1 T imaging system, and compared with spin-echo and echo-planar imaging diffusion-weighted imaging ...
متن کاملPerformance of single spin-echo and doubly refocused diffusion-weighted sequences in the presence of eddy current fields with multiple components.
Echo-planar diffusion-weighted images can display significant geometric distortions due to eddy current fields. Several preparation schemes have been proposed, which can null eddy currents with a single time constant. The aim of this work was to compare the performance of three such pulse sequences in the presence of multiple components and investigate whether affine registration is capable of ...
متن کاملfMRI contrast at high and ultrahigh magnetic fields: Insight from complementary methods
This manuscript examines the origins and nature of the function-derived activation detected by magnetic resonance imaging at ultrahigh fields using different encoding methods. A series of preclinical high field (7 T) and ultra-high field (17.2 T) fMRI experiments were performed using gradient echo EPI, spin echo EPI and spatio-temporally encoded (SPEN) strategies. The dependencies of the fMRI s...
متن کاملA spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media.
In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 75 5 شماره
صفحات -
تاریخ انتشار 2016